123: A basic example of creating an interactive plot with HoloViews and Bokeh

This is a very simple of example of producing an interactive visualisation using Holoviews (which calls on Bokeh). These visualisations can be viewed in Jupyter notebooks, or may be saved as a single html page which needs only a web browser to see. Here we show room temperature and humidity, with the plots allowing the choice of which room to show.

To create these interactive plots you will need to install pyviz, holoviews and bokeh as described below.

Install libraries if needed

From terminal run:

conda install -c pyviz holoviews bokeh

holoviews --install-examples

Import libraries

import numpy as np
import pandas as pd
import holoviews as hv
import panel as pn
from holoviews import opts

Create some dummy data

# Set length of data set to create
length = 25

# Build strings for location data
location1 = ['Window'] * length
location2 = ['Porch'] * length
location3 = ['Fridge'] * length

# Set temperature to normal distribution (mu, sigma, length)
temperature1 = np.random.normal(25 ,5, length)
temperature2 = np.random.normal(15 ,3, length)
temperature3 = np.random.normal(4, 0.5,length)

# Set temperature to uniform distribution (min, max, length)
humidity1 = np.random.uniform(30, 60, length)
humidity2 = np.random.uniform(60, 80, length)
humidity3 = np.random.uniform(80, 99, length)

# Record mean temperature/humidity (use np.repeat to repeata single value)
mean_temp1 = np.repeat(np.mean(temperature1), length)
mean_temp2 = np.repeat(np.mean(temperature2), length)
mean_temp3 = np.repeat(np.mean(temperature3), length)

mean_humidity1 = np.repeat(np.mean(humidity1), length)
mean_humidity2 = np.repeat(np.mean(humidity2), length)
mean_humidity3 = np.repeat(np.mean(humidity3), length)

# Concatenate three sets of data into single list/arrays
location = location1 + location2 + location3
temperature = np.concatenate((temperature1, temperature2, temperature3))
mean_temperature = np.concatenate((mean_temp1, mean_temp2, mean_temp3))
humidity = np.concatenate((humidity1, humidity2, humidity3))
mean_humidity = np.concatenate((mean_humidity1, mean_humidity2, mean_humidity3))

# Create list of days
days = list(range(1,length + 1))
day = days * 3 # times 3 as there are three locations

# Transfer data to pandas DataFrame
data = pd.DataFrame()
data['day'] = day
data['location'] = location
data['temperature'] = temperature
data['humidity'] = humidity
data['mean_temperature'] = mean_temperature
data['mean_humidity'] = mean_humidity



day	location	temperature	humidity	mean_temperature	mean_humidity
0	1	Window	26.081745	49.611333	25.222169	45.43133
1	2	Window	31.452276	39.027559	25.222169	45.43133
2	3	Window	19.031828	58.825912	25.222169	45.43133
3	4	Window	21.309825	52.741160	25.222169	45.43133
4	5	Window	13.529042	39.977335	25.222169	45.43133

Build bar chart

# Make holoviews data table
key_dimensions   = ['location']
value_dimensions = ['day', 'temperature', 'humidity', 'mean_temperature', 'mean_humidity']
hv_data = hv.Table(data, key_dimensions, value_dimensions)

# Build bar charts
bars1 = hv_data.to.bars(['day'], ['temperature'])
bars2 = hv_data.to.bars(['day'], ['humidity']).opts(color='Red')

# Compose plot
bar_plot = bars1 + bars2

# Show plot (only work in Jupyter notebook)

Build scatter chart

# Build scatter charts
scatter1 = hv_data.to.scatter(['day'], ['temperature'])
scatter2 = hv_data.to.scatter(['day'], ['humidity']).opts(color='Red')

# Compose plot
scatter_plot = scatter1 + scatter2

# Show plot

Build line chart for mean temperature and humidity

# Build line charts
line1 = hv_data.to.curve(['day'], ['mean_temperature'])
line2 = hv_data.to.curve(['day'], ['mean_humidity']).opts(color='r')

# Compose plot
line_chart = line1 + line2

# Show plot

Combine line and scatter charts

Here we combine the line and scatter charts. We viewed them individually before, though this is not actually necessary.

# Compose plot (* creates overlays of two or more plots)
combined_plot = line1 * scatter1 + line2 * scatter2

# Show plot

Save to html

The interactive plot may be saved as html which may be shared with, and viewed by, anyone (there is no need for anything other than a standard web browser to view the interactive plot).

hv.save(combined_plot, 'holoviews_example.html')

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s