47. Linear regression with scipy.stats

%matplotlib inline

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

# Set up x any arrays


# scipy linear regression

gradient, intercept, r_value, p_value, std_err = stats.linregress(x,y)

# Calculated fitted y

y_fit=intercept + (x*gradient)

# Plot data

plt.plot(x, y, 'o', label='original data')
plt.plot(x, y_fit, 'r', label='fitted line')

# Add text box and legend

text='Intercept: %.1f\nslope: %.2f\nR-square: %.3f' %(intercept,gradient,r_value**2)

# Display plot

plt.show()plot_19Linear regression with scipy.stats


One thought on “47. Linear regression with scipy.stats

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s